Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Metabolites ; 13(5)2023 May 05.
Article in English | MEDLINE | ID: covidwho-20238935

ABSTRACT

The accumulating literature demonstrates that omega-3 polyunsaturated fatty acid (n-3 polyunsaturated fatty acid, N3PUFA) can be incorporated into the phospholipid bilayer of cell membranes in the human body to positively affect the cardiovascular system, including improving epithelial function, decreasing coagulopathy, and attenuating uncontrolled inflammatory responses and oxidative stress. Moreover, it has been proven that the N3PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are precursors of some potent endogenous bioactive lipid mediators that mediate some favorable effects attributed to their parent substances. A dose-response relationship between increased EPA and DHA intake and reduced thrombotic outcomes has been reported. The excellent safety profile of dietary N3PUFAs makes them a prospective adjuvant treatment for people exposed to a higher risk of cardiovascular problems associated with COVID-19. This review presented the potential mechanisms that might contribute to the beneficial effects of N3PUFA and the optimal form and dose applied.

2.
Molecules ; 28(9)2023 Apr 26.
Article in English | MEDLINE | ID: covidwho-2312357

ABSTRACT

Medium- and long-chain saturated and unsaturated free fatty acids (FFAs) are known to bind to human serum albumin (HSA), the main plasma carrier protein. Atomic-level structural data regarding the binding mode in Sudlow's sites I (FA7) and II (FA4, FA3) of the polyunsaturated ω-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), however, are largely unknown. Herein, we report the combined use of saturation transfer difference (STD) and Interligand NOEs for Pharmacophore Mapping (INPHARMA) NMR techniques and molecular docking calculations to investigate the binding mode of DHA and EPA in Sudlow's sites Ι and ΙΙ of HSA. The docking calculations and the significant number of interligand NOEs between DHA and EPA and the drugs warfarin and ibuprofen, which are stereotypical ligands for Sudlow's sites I and II, respectively, were interpreted in terms of competitive binding modes and the presence of two orientations of DHA and EPA at the binding sites FA7 and FA4. The exceptional flexibility of the long-chain DHA and EPA and the formation of strongly folded structural motives are the key properties of HSA-PUFA complexes.


Subject(s)
Eicosapentaenoic Acid , Serum Albumin, Human , Humans , Eicosapentaenoic Acid/metabolism , Docosahexaenoic Acids , Molecular Docking Simulation , Binding Sites , Magnetic Resonance Spectroscopy , Fatty Acids, Unsaturated/metabolism
3.
Am J Clin Nutr ; 117(2): 357-363, 2023 02.
Article in English | MEDLINE | ID: covidwho-2262299

ABSTRACT

BACKGROUND: The role of nutritional status and the risk of contracting and/or experiencing adverse outcomes from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are unclear. Preliminary studies suggest that higher n-3 PUFA intakes are protective. OBJECTIVES: This study aimed to compare the risk of 3 coronavirus disease 2019 (COVID-19) outcomes (testing positive for SARS-CoV-2, hospitalization, and death) as a function of the baseline plasma DHA levels. METHODS: The DHA levels (% of total fatty acids [FAs]) were measured by nuclear magnetic resonance. The 3 outcomes and relevant covariates were available for 110,584 subjects (hospitalization and death) and for 26,595 ever-tested subjects (positive for SARS-CoV-2) in the UK Biobank prospective cohort study. Outcome data between 1 January, 2020, and 23 March, 2021, were included. The Omega-3 Index (O3I) (RBC EPA + DHA%) values across DHA% quintiles were estimated. The multivariable Cox proportional hazards models were constructed, and linear (per 1 SD) relations with the risk of each outcome were computed as HRs. RESULTS: In the fully adjusted models, comparing the fifth to the first DHA% quintiles, the HRs (95% confidence intervals) for testing positive, being hospitalized, and dying with COVID-19 were 0.79 (0.71, 0.89, P < 0.001), 0.74 (0.58, 0.94, P < 0.05), and 1.04 (0.69-1.57, not significant), respectively. On a per 1-SD increase in DHA% basis, the HRs for testing positive, hospitalization, and death, were 0.92 (0.89, 0.96, P < 0.001), 0.89 (0.83, 0.97, P < 0.01), and 0.95 (0.83, 1.09), respectively. The estimated O3I values across DHA quintiles ranged from 3.5% (quintile 1) to 8% (quintile 5). CONCLUSIONS: These findings suggest that nutritional strategies to increase the circulating n-3 PUFA levels, such as increased consumption of oily fish and/or use of n-3 FA supplements, may reduce the risk of adverse COVID-19 outcomes.


Subject(s)
COVID-19 , Fatty Acids, Omega-3 , Humans , Animals , SARS-CoV-2 , Biological Specimen Banks , Prospective Studies , United Kingdom/epidemiology
4.
J Clin Med ; 12(1)2022 Dec 30.
Article in English | MEDLINE | ID: covidwho-2246032

ABSTRACT

Coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), might be complicated by Acute Respiratory Distress Syndrome (ARDS) caused by severe lung damage. It is relevant to find treatments for COVID-19-related ARDS. Currently, DHA and EPA n-3 PUFAs, known for their immunomodulatory activities, have been proposed for COVID-19 management, and clinical trials are ongoing. Here, examining COVID-19-related ARDS immunopathology, we reference in vitro and in vivo studies, indicating n-3 PUFA immunomodulation on lung microenvironment (bronchial and alveolar epithelial cells, macrophages, infiltrating immune cells) and ARDS, potentially affecting immune responses in COVID-19-related ARDS. Concerning in vitro studies, evidence exists of the potential anti-inflammatory activity of DHA on airway epithelial cells and monocytes/macrophages; however, it is necessary to analyze n-3 PUFA immunomodulation using viral experimental models relevant to SARS-CoV-2 infection. Then, although pre-clinical investigations in experimental acute lung injury/ARDS revealed beneficial immunomodulation by n-3 PUFAs when extracellular pathogen infections were used as lung inflammatory models, contradictory results were reported using intracellular viral infections. Finally, clinical trials investigating n-3 PUFA immunomodulation in ARDS are limited, with small samples and contradictory results. In conclusion, further in vitro and in vivo investigations are needed to establish whether n-3 PUFAs may have some therapeutic potential in COVID-19-related ARDS.

5.
Healthcare (Basel) ; 11(3)2023 Jan 18.
Article in English | MEDLINE | ID: covidwho-2200014

ABSTRACT

BACKGROUND: Digital health significantly affects healthcare delivery. Moreover, empirical studies on the utilization of telehealth in Dubai are limited. Accordingly, this study examines the utilization of telehealth services in Dubai Health Authority (DHA) facilities and the factors associated with telehealth appointment completion and turnaround time. METHODS: This cross-sectional study examines patients who used telehealth services in DHA from 2020 through 2021 using 241,822 records. A binary logistic regression model was constructed to investigate the association between appointment turnaround time as a dependent variable and patient and visit characteristics as independent variables. RESULTS: Of the total scheduled telehealth visits, more than three-quarter (78.55%) were completed. Older patients, non-Emiratis, patients who had their visits in 2020, patients who had video visits, and those who sought family medicine as a specialty had a shorter turnaround time to receive their appointment. CONCLUSIONS: This study identifies several characteristics associated with the turnaround time. Moreover, technological improvements focusing on specialties that can readily be addressed through telehealth and further research in this domain will improve service provision and support building an evidence-base in the government sector of the emirate of Dubai.

6.
Int J Gen Med ; 15: 3915-3922, 2022.
Article in English | MEDLINE | ID: covidwho-1793336

ABSTRACT

COVID-19 can cause fever, cough, headache, and shortness of breath but patients with comorbidities can experience worsening and death. An action is needed to treat this condition in COVID-19 patients. Omega 3 fatty acids may be one possibility associated with COVID-19 prevention, management, and treatment. Therefore, this review aimed to identify the existing studies on potency of omega 3 fatty acid supplementation on COVID-19. We searched studies from PubMed, Google Scholar, Springer Link, and Emerald Insight databases published on January 31, 2020, to September 1, 2021. The studies selected were the full-text, non-review ones which focused on the omega 3 fatty acid intervention in COVID-19 with COVID-19 patients and people affected by COVID-19 as their subjects and clinical manifestations or the results of supporting examinations as their outcomes. No quality assessment was performed in this review. Of the 211, there were 4 studies selected for this review. They showed that severe COVID-19 patients have low levels of omega 3 in their blood. Omega 3 was considered to reduce the risk of positive for SARS-CoV-infection and the duration of symptoms, overcome the renal and respiratory dysfunction, and increase survival rate in COVID-19 patients. Omega 3 fatty acid supplementations were thought to have a potential effect in preventing and treating COVID-19. This can be a reference for further research about omega 3 fatty acid supplementation and COVID-19.

7.
Prostaglandins Leukot Essent Fatty Acids ; 179: 102426, 2022 04.
Article in English | MEDLINE | ID: covidwho-1763934

ABSTRACT

Many current treatment options for lung inflammation and thrombosis come with unwanted side effects. The natural omega-3 fatty acids (O3FA) are generally anti-inflammatory and antithrombotic. O3FA are always administered orally and occasionally by intravenous (IV) infusion. The main goal of this study is to determine if O3FA administered by inhalation of a nebulized formulation mitigates LPS-induced acute lung inflammation in male Wistar rats. Inflammation was triggered by intraperitoneal injection of LPS once a day for 14 days. One hour post-injection, rats received nebulized treatments consisting of egg lecithin emulsified O3, Budesonide and Montelukast, and blends of O3 and Melatonin or Montelukast or Cannabidiol; O3 was in the form of free fatty acids for all groups except one group with ethyl esters. Lung histology and cytokines were determined in n = 3 rats per group at day 8 and day 15. All groups had alveolar histiocytosis severity scores half or less than that of the disease control (Cd) treated with LPS and saline only inhalation. IL-6, TNF-α, TGF-ß, and IL-10 were attenuated in all O3FA groups. IL-1ß was attenuated in most but not all O3 groups. O3 administered as ethyl ester was overall most effective in mitigating LPS effects. No evidence of lipid pneumonia or other chronic distress was observed. These preclinical data suggest that O3FA formulations should be further investigated as treatments in lung inflammation and thrombosis related lung disorders, including asthma, chronic obstructive pulmonary disease, lung cancer and acute respiratory distress such as COVID-19.


Subject(s)
COVID-19 Drug Treatment , Fatty Acids, Omega-3 , Pneumonia , Pulmonary Disease, Chronic Obstructive , Animals , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Fatty Acids, Omega-3/therapeutic use , Lipopolysaccharides , Male , Pneumonia/chemically induced , Pneumonia/drug therapy , Rats , Rats, Wistar
8.
Molecules ; 27(5)2022 Mar 03.
Article in English | MEDLINE | ID: covidwho-1732130

ABSTRACT

Marine organisms are an important source of natural products with unique and diverse chemical structures that may hold the key for the development of novel drugs. Docosahexaenoic acid (DHA) is an omega-3 fatty acid marine natural product playing a crucial regulatory role in the resolution of inflammation and acting as a precursor for the biosynthesis of the anti-inflammatory specialized pro-resolving mediators (SPMs) resolvins, protectins, and maresins. These metabolites exert many beneficial actions including neuroprotection, anti-hypertension, or anti-tumorigenesis. As dysregulation of SPMs is associated with diseases of prolonged inflammation, the disclosure of their bioactivities may be correlated with anti-inflammatory and pro-resolving capabilities, offering new targets for drug design. The availability of these SPMs from natural resources is very low, but the evaluation of their pharmacological properties requires their access in larger amounts, as achieved by synthetic routes. In this report, the first review of the total organic syntheses carried out for resolvins, protectins, and maresins is presented. Recently, it was proposed that DHA-derived pro-resolving mediators play a key role in the treatment of COVID-19. In this work we also review the current evidence on the structures, biosynthesis, and functional and new-found roles of these novel lipid mediators of disease resolution.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Docosahexaenoic Acids/metabolism , Inflammation/prevention & control , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/metabolism , COVID-19/virology , Docosahexaenoic Acids/biosynthesis , Docosahexaenoic Acids/chemical synthesis , Docosahexaenoic Acids/chemistry , Docosahexaenoic Acids/therapeutic use , Drug Design , Humans , Inflammation/pathology , SARS-CoV-2/isolation & purification , COVID-19 Drug Treatment
9.
Semin Immunol ; : 101597, 2022 Feb 16.
Article in English | MEDLINE | ID: covidwho-1683603

ABSTRACT

The COVID-19 pandemic has raised international awareness of the importance of rigorous scientific evidence and the havoc caused by uncontrolled excessive inflammation. Here we consider the evidence on whether the specialized pro-resolving mediators (SPMs) are ready to meet this challenge as well as targeted metabololipidomics of the resolution-inflammation metabolomes. Specific stereochemical mechanisms in the biosynthesis of SPMs from omega-3 essential fatty acids give rise to unique local-acting lipid mediators. SPMs possess stereochemically defined potent bioactive structures that are high-affinity ligands for cognate G protein-coupled surface receptors that evoke the cellular responses required for efficient resolution of acute inflammation. The SPMs biosynthesized from the major omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are coined Resolvins (resolution phase interaction products; E series and D-series), Protectins and Maresins (macrophage mediators in resolving inflammation). Their biosynthesis and stereochemical assignments are established and confirmed (>1,441 resolvin publications in PubMed.gov) as well as their functional roles on innate immune cells and adaptive immune cells (both lymphocyte T-cell subsets and B-cells). The resolution of a protective acute inflammatory response is governed mainly by phagocytes that actively clear apoptotic cells, debris, blood clots and pathogens. These resolution phase functions of the acute inflammatory response are enhanced by SPMs, which together prepare the inflammatory loci for homeostasis and stimulate tissue regeneration via activating stem cells and the biosynthesis of novel cys-SPMs (e.g. MCTRs, PCTRs and RCTRs). These cys-SPMs also activate regeneration, are organ protective and stimulate resolution of local inflammation. Herein, we review the biosynthesis and functions of the E-series resolvins, namely resolvin E1 (the first n-3 resolvin identified), resolvin E2, resolvin E3 and resolvin E4 biosynthesized from their precursor eicosapentaenoic acid (EPA), and the critical role of total organic synthesis in confirming SPM complete stereochemistry, establishing their potent functions in resolution of inflammation, and novel structures. The physical properties of each biologically derived SPM, i.e., ultra-violet (UV) absorbance, chromatographic behavior, and tandem mass spectrometry (MS2) fragmentation, were matched to SPMs biosynthesized and prepared by stereospecific total organic synthesis. We briefly review this approach, also used with the endogenous D-series resolvins, protectins and maresins confirming their potent functions in resolution of inflammation, that paves the way for their rigorous evaluation in human tissues and clinical trials. The assignment of complete stereochemistry for each of the E and D series Resolvins, Protectins and Maresins was a critical and required step that enabled human clinical studies as in SPM profiling in COVID-19 infections and experimental animal disease models that also opened the promise of resolution physiology, resolution pharmacology and targeted precision nutrition as new areas for monitoring health and disease mechanisms.

10.
Nutrients ; 14(3)2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-1667259

ABSTRACT

The U.S. and Japan are both democratic industrialized societies, but the numbers of COVID-19 cases and deaths per million people in the U.S. (including Japanese Americans) are 12.1-times and 17.4-times higher, respectively, than those in Japan. The aim of this study was to investigate the effects of diet on preventing COVID-19 infection. An analysis of dietary intake and the prevalence of obesity in the populations of both countries was performed, and their effects on COVID-19 infection were examined. Approximately 1.5-times more saturated fat and less eicosapentaenoic acid/docosahexaenoic acid are consumed in the U.S. than in Japan. Compared with food intakes in Japan (100%), those in the U.S. were as follows: beef 396%, sugar and sweeteners 235%, fish 44.3%, rice 11.5%, soybeans 0.5%, and tea 54.7%. The last four of these foods contain functional substances that prevent COVID-19. The prevalence of obesity is 7.4- and 10-times greater in the U.S. than in Japan for males and females, respectively. Mendelian randomization established a causal relationship between obesity and COVID-19 infection. Large differences in nutrient intakes and the prevalence of obesity, but not racial differences, may be partly responsible for differences in the incidence and mortality of COVID-19 between the U.S. and Japan.


Subject(s)
COVID-19 , Animals , COVID-19/epidemiology , Cattle , Diet , Eating , Female , Humans , Japan/epidemiology , Male , SARS-CoV-2 , United States/epidemiology
11.
Int J Mol Sci ; 22(5)2021 Feb 27.
Article in English | MEDLINE | ID: covidwho-1120857

ABSTRACT

The beneficial effects of long-chain polyunsaturated omega-3 fatty acids (omega-3 PUFAs) in cardioprotection are widely known and generally accepted. In this literature review, we have focused on the known and postulated mechanisms of action of omega-3 PUFAs and their metabolites on various components of the haemostatic system, in particular on blood platelets and endothelium. We have also made an attempt to provide a comprehensive review of epidemiological studies with particular regard to clinical trials. Notably, the results of these studies are contradictory, and some of them failed to report the beneficial effects of taking or supplementing omega-3 PUFAs in the diet. A potential explanation, in our opinion, could be the need to use higher doses of omega-3 PUFAs and a proper ratio of omega-3 and omega-6 PUFAs. An additional problem which is difficult to solve is the use of a proper neutral placebo for interventional studies. Despite some controversies regarding the beneficial effects of supplementation of omega-3 PUFAs in cardiovascular disease, our review suggests that a promising aspect of future studies and applications is to focus on the anti-thrombotic properties of these compounds. An argument supporting this assumption is the recent use of omega-3 PUFAs as a supporting tool for the treatment of COVID-19 complications.


Subject(s)
COVID-19/complications , Cardiovascular Diseases/drug therapy , Fatty Acids, Omega-3/administration & dosage , Blood Platelets/drug effects , Blood Platelets/metabolism , COVID-19/blood , Cardiovascular Diseases/blood , Cardiovascular Diseases/metabolism , Diet , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/administration & dosage , Fibrinolytic Agents/administration & dosage , Hemostasis/drug effects , Humans , Randomized Controlled Trials as Topic , SARS-CoV-2/isolation & purification , Thrombosis/drug therapy , COVID-19 Drug Treatment
12.
Nutrients ; 13(2)2021 Feb 22.
Article in English | MEDLINE | ID: covidwho-1090308

ABSTRACT

The anti-infective properties of breast milk have been known for decades. In recent years, an increasing number of papers have described the variety of bioactive compounds that are present in breast milk with varying degrees of antiviral activity. However, to date, the totality of the properties of these compounds is not fully understood and, above all, their synergistic interaction is not yet known. The purpose of this review is to describe the current knowledge about the antiviral compounds in breast milk, both with specific and non-specific action against pathogens. Due to the current pandemic situation from SARS-CoV-2 (Severe acute respiratory syndrome Coronavirus-2), research has focused on a multitude of potential antiviral substances, taking breast milk as a biological model of reference. Future research is needed to expand the knowledge of these compounds, which will hopefully assist in the development of therapies applicable even at later ages.


Subject(s)
Antiviral Agents/metabolism , COVID-19/metabolism , Milk, Human/metabolism , SARS-CoV-2/metabolism , Female , Humans
13.
Molecules ; 26(3)2021 Jan 29.
Article in English | MEDLINE | ID: covidwho-1055087

ABSTRACT

SARS-CoV-2 infects host cells by interacting its spike protein with surface angiotensin-converting enzyme 2 (ACE2) receptors, expressed in lung and other cell types. Although several risk factors could explain why some countries have lower incidence and fatality rates than others, environmental factors such as diet should be considered. It has been described that countries with high polyunsaturated fatty acid (PUFA) intake have a lower number of COVID-19 victims and a higher rate of recovery from the disease. Moreover, it was found that linoleic acid, an omega-6 PUFA, could stabilize the spike protein in a closed conformation, blocking its interaction with ACE2. These facts prompted us to perform in silico simulations to determine if other PUFA could also stabilize the closed conformation of spike protein and potentially lead to a reduction in SARS-CoV-2 infection. We found that: (a) countries whose source of omega-3 is from marine origin have lower fatality rates; and (b) like linoleic acid, omega-3 PUFA could also bind to the closed conformation of spike protein and therefore, could help reduce COVID-19 complications by reducing viral entrance to cells, in addition to their known anti-inflammatory effects.


Subject(s)
COVID-19/epidemiology , Fatty Acids, Unsaturated/chemistry , Fatty Acids, Unsaturated/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Computer Simulation , Eating , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Unsaturated/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Seafood , Virus Internalization/drug effects
14.
Free Radic Biol Med ; 156: 190-199, 2020 08 20.
Article in English | MEDLINE | ID: covidwho-641158

ABSTRACT

Studies have shown that infection, excessive coagulation, cytokine storm, leukopenia, lymphopenia, hypoxemia and oxidative stress have also been observed in critically ill Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) patients in addition to the onset symptoms. There are still no approved drugs or vaccines. Dietary supplements could possibly improve the patient's recovery. Omega-3 fatty acids, specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), present an anti-inflammatory effect that could ameliorate some patients need for intensive care unit (ICU) admission. EPA and DHA replace arachidonic acid (ARA) in the phospholipid membranes. When oxidized by enzymes, EPA and DHA contribute to the synthesis of less inflammatory eicosanoids and specialized pro-resolving lipid mediators (SPMs), such as resolvins, maresins and protectins. This reduces inflammation. In contrast, some studies have reported that EPA and DHA can make cell membranes more susceptible to non-enzymatic oxidation mediated by reactive oxygen species, leading to the formation of potentially toxic oxidation products and increasing the oxidative stress. Although the inflammatory resolution improved by EPA and DHA could contribute to the recovery of patients infected with SARS-CoV-2, Omega-3 fatty acids supplementation cannot be recommended before randomized and controlled trials are carried out.


Subject(s)
Coronavirus Infections/diet therapy , Cytokine Release Syndrome/diet therapy , Dietary Supplements , Docosahexaenoic Acids/administration & dosage , Eicosapentaenoic Acid/administration & dosage , Leukopenia/diet therapy , Pandemics , Pneumonia, Viral/diet therapy , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Cytokine Release Syndrome/epidemiology , Cytokine Release Syndrome/metabolism , Cytokine Release Syndrome/virology , Disseminated Intravascular Coagulation/diet therapy , Disseminated Intravascular Coagulation/epidemiology , Disseminated Intravascular Coagulation/metabolism , Disseminated Intravascular Coagulation/virology , Humans , Hypoxia/diet therapy , Hypoxia/epidemiology , Hypoxia/metabolism , Hypoxia/virology , Leukopenia/epidemiology , Leukopenia/metabolism , Leukopenia/virology , Oxidative Stress , Pneumonia, Viral/epidemiology , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Randomized Controlled Trials as Topic , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL